Xi1Finder and VOFinder documentation

StRoot/StSecondaryVertexMaker/ :
StVOFinderMaker. cxx
StVOFinderMaker.h
StXiFinderMaker. cxx
StXiFinderMaker.h

StRoot/StSecondaryVertexMaker/doc/ :
docXiFinder.tex

— Julien Faivre
Strangeness group
julien.faivre@ires.in2p3.fr

Contents

List of Figures

VOFinder and XiFinder 1 - What are the VOFinder and XiFinder ¢

1 What are the VOFinder and XiFinder ?

Let’s first define the 3 different sorts of secondary vertices :
e Kink vertices : when a charged particle decays into a charged plus a neutral,
e VO vertices : when a neutral particle decays into two charged particles,

e Xi vertices : when a charged particle decays into a charged plus a neutral, and then the neutral
daughter decays itself into two charged particles. One can’t say that a Xi vertex is a Kink followed
by a V0, because both charged tracks (mother and daughter) have to be seen in the TPC in order
to say that the vertex is a kink. This is not the case for Xi vertices, because the c¢r of particles
who do a Xi vertex if much shorter than the distance between the primary vertex and the TPC
(50 e¢m), even shorter than the distance to the first layer of the svT (6.7 ¢m, versus c¢7, = 4.9 cm
and ety = 2.5 cm).

People working on strange particles in the strangeness group need a piece of code that is able
to reconstruct the primary strange particles from the tracks. Those strange particles can be divided into
two groups :

e VO0’s : those particles (A, K?) decay into two particles (A — pr~, KO — 777~). We need to
be able to search and find them using only the daughter’s tracks (that’s all we have !).

e Xi’s : those particles (Z, Q) decay into 1 charged particle — called bachelor — and a A (E — A7,
2 — AK™). The A, as said in the previous item, decays into two particles. So here, we need
to find all combinations of 3 charged particles that are possibly the daughters of a unique strange
particle.

The algorithms of those codes are described in the section ?77?.

From the beginning of STAR and until year 2002, the codes used were what I will call afterwards
eziam and evflam. They are Fortran codes, located in pams/global/exi/exiam.F and pams/global/-
ev0/ev0_am2.F, with other files that are necessary for the code to be run (basically subroutines and
interfacing functions).

So here is the “old” way to do things : the BFC is run, and it calls the series of makers that
it is supposed to call. Among those makers are StXiMaker and StVOMaker — the strangeness makers,
with StKinkMaker — and they are run after nearly all the other makers of the BFC, since they need the
tracks to be reconstructed and the primary vertex to be found. The VOMaker is run first, finds the V0’s,
and those feed the XiMaker, which tries to find Xi candidates for each V0. At a deeper level, inside the
Make () function of both the XiMaker and the VOMaker, are called the Fortran PAMs, i.e. respectively
evOam and exiam. PAM means either “Plugable Analysis Module” or “Physics Analysis Module”. I don’t
know if somebody knows which of the two it is !

The interfacing between the BFC (C++) and the PAMs (Fortran) won’t be discussed here. If you
want to know more, you can have a look at those files : pams/global/exi/exiam.idl, pams/global/-
ev0/ev0_am2.idl, pams/idl/dst_track.idl, pams/idl/dst_vertex.idl, pams/idl/dst _vO_vertex.-
idl, pams/id1/dst xi vertex.idl. The data are passed — from maker to maker, and also between a
maker and the PAM it calls — by tables. For example the tracks are stored in a table, and evlam will read
the table to have the tracks parameters. It will then store the V0’s in another table. Then, exiam will read
this table and the table of tracks, and write the Xi’s found in a third table. Classes for interfacing have a
general name which is “St_tableName_Table.h”, and they can be found in include/tables/ (as examples

St_exi_exipar Table.h, St_evO_aux Table.h, St_dst_track Table.h, St_dst_xi vertex Table.h,

4

VOFinder and XiFinder 3 - Owerall algorithms of the codes

etc... Further information about St_dst_track_Table can be found at root.cern.ch/root/html/TTable.html
in the section “Class description”). On the other hand, the corresponding structures are stored in pams/-
global/idl/, in files like exi_exipar.idl (general name of the file : tableName.idl ; general name of
the structure used afterwards : tableName_st). You could have a look at e.g. StXiMaker::Init() (the

V0 and XiMaker’s are in StRoot/St_dst Maker/) to have an example of how all this is used.

As explained in the section ?7, the strangeness Fortran PAMs had to be replaced with C++
code. As exiam and evOam refer to the corresponding PAMs, XiFinder and VOFinder are the names we
gave to their C++ translations. They are makers, whose complete names are StXiFinderMaker and
StVOFinderMaker. This is what we call the strangeness StSecondaryVertextMaker package.

2 Historical purpose for StSecondaryVertexMaker package

The StSecondaryVertexMaker package implements secondary vertex-finding in C+4. Why ¢ There is
and has been code for reconstucting secondary vertices in the form of the ev0, exi, and tkf PAMs. These
PAMs were written in Fortran and work with tables. They are called from C++4 makers currently kept
in the St_dst_Maker package library. They work well, but suffer limitations :

e They cannot be re-run on DSTs after production,
e They cannot operate on the tracking output of ITTF.

In order to overcome both limitations, the preffered solution is to write C++ versions of these PAMs
which can use StEvent structures for both input and output (versus trying to convert StEvent structures
back into tables for input). This is the primary purpose of the StSecondaryVertexMaker package.

Advantages of being able to run such a code on the DSTs are that analysis such as rotating can
be done without running the whole BFC on the daq files, as well as analysis that require modifications
in the secondary vertex reconstruction code, like the value of the reconstruction cuts for example. The
time profit is huge, since it takes more than 20 times more time to run the whole reconstruction chain
than just the C++ secondary vertex reconstruction makers.

3 Overall algorithms of the codes

Apart from some parts described below, the VOFinder and XiFinder are essentially the ev0 and exi PAMs
rewritten from Fortran to C++, from a “tabelized” way of communicating to a standard object-oriented,
mono-language code.

3.1 KinkFinder

To be written.

3.2 VOFinder

Cut parameters are initially requested from the database (time stamps determine what is the nature of
the data, e.g. p-p, Au-Au, d-Au). Then, tracks which satisfy a set of cuts are chosen as candidates for

VOFinder and XiFinder 3 - Owerall algorithms of the codes

V0 daughters. The daughter candidates are then examined in pairs of negative and positive daughters
to see if the tracks approach each other and pass a series of cuts to determine if they are consistent with
a V0 secondary decay.

Formerly, a second pass was required on the V0s. This was to facilitate their use in finding
Xi decays. VO0s from Xi decays are secondary V0s, and thus do not originate from the primary vertex.
This means looser cuts are necessary on these V0s than primary V0s. So, the first pass was made with
the loose cuts, the Xi decays were found, and then the V0s were run through tighter cuts to remove
unused ones which were inconsistent with being primary V0s. This second pass prevented the output of
significant numbers of unnecessary VO candidates.

This second pass has been replaced by a different mechanism. Now, for each VO which passes
the looser secondary VO cuts, a UseVO() function is called. The idea is that a XiFinder can be written
which inherits from the VOFinder, and implements the UseV0O() function to find Xi candidates with a
given V0. The UseVO() function then returns true or false depending on whether any Xi candidates are
found using that V0. Upon returning to the VOFinder code, the V0 is discarded if it neither passes the
cuts for a primary V0 nor gets used in the UseV0O() function.

This scheme has the advantage of not inserting a VO into the StEvent vector of VOs unless
it is a viable candidate. It also reduces considerably the memory overhead required during VO-finding
as not all of the secondary VO candidates are found and stored at once (particularly poignant in high-
multiplicity events where many thousands of secondary VOs are considered). This only disadvantage is
some overhead in making a function call in the middle of the VO-finding loop.

Fi1a. 77 shows that even if the code of the VOFinder is quite long, the alorithm is definitely
simple.

‘ Container of tracks ‘

~

Loop over positive tracks
Loop over negative tracks
Find DCA between both helices
Apply cuts
If good candidate : store

‘ Container of V0 vertices ‘

Fi1G. 1 : Overall algorithm of the VOFinder.

3.3 XiFinder

The StXiFinderMaker inherits from StVOFinderMaker as indicated above. Because it is actually a
VOFinder itself via this inheritance, one need not instantiate a StVOFinderMaker if one instantiates a
StXiFinderMaker.

Similar to the StVOFinderMaker, appropriate cut parameters are initially requested from the
database. The same tracks that are considered for the VO0s are also used as daughter candidates for
the Xis. The Make() member function then simply calls the inherited Make () member function from
the StVOFinderMaker. Control comes back to the StXiFinderMaker at the call to UseVO(), which is
implemented here as a loop over Xi daughter candidates to be paired with the VO daughter candidate.
If the daughters approach each other and pass a series of cuts, the candidate is accepted and stored in

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

StEvent. Control is then passed back to the VOFinder, with a return value indicating whether the V0
was in fact used.

As for the VOFinder, F1a. ?? below shows that the XiFinder alorithm is very simple, although
the code is long. More detailed algorithms can be found in section ?7?.

| Container of VO vertices Container of tracks |

Loop over VO vertices
Apply cuts on the VO and V0 daughters
Loop over global tracks
If track has wrong charge : next
If track already used in the V0 : next
Find DCA between V0’s straight line and track’s helix
Apply cuts
If good candidate : store

‘ Container of Xi vertices ‘

Fi1G. 2 : Overall algorithm of the XiFinder.

4 Structure of the Fortran and C+4+4 codes

4.1 KinkFinder

To be written.

4.2 Common remarks for the VO/XiFinder

The first thing to mention is a change in the interaction between the VOFinder and the XiFinder. The
XiFinder actually uses the V0’s that have first been found by the VOFinder. The table below shows how
this is done in the Fortran code :

Call StVOMaker: :Make() | Finds V0’s and store them in a table

Call StXiMaker: :Make() | Loop over the V0’s in the table to find Xi candidates
Call StVOMaker: : Trim() | Loop over the V0’s in the table to throw away the
non-primary V0’s that are not used in a Xi candidate

This waste of memory (storing V0’s that will be deleted afterwards) and of time (scanning
twice the table of V0’s) is solved in the C++ code, by the fact that the class StXiFinderMaker actually
inherits from StVOFinderMaker. The member-functions of each of them and their role are listed in
Fic. 77.

Note that StXiFinderMaker::Init() is the equivalent of StVOFinderMaker::GetPars().
The effect of the function StVOFinderMaker : :DontZapVO0s is that the VO’s that are already in StEvent are
kept, the V0’s found by the VOFinder will be added. The function StVOFinderMaker: :UseExistingVOs

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

also keeps the V0’s that are already in StEvent, but also prevents the VOFinder to be run, and forces the
XiFinder to use the V0’s previously found. The function StVOFinderMaker: :UseITTFTracks has been
implemented for ITTF test purposes, since it allows the user to choose between using the ITTF tracks or
using the tracks found by the standard reconstruction.

When the VOFinder is run alone, the method StVOFinderMaker: :UseVO0() is called for each
VO found, and returns false, since we don’t want to find Xi’s.

When both the XiFinder and VOFinder are run, the XiFinder first calls StVOFinderMa-
ker: :Make (). This function finds V0’s and, for each of them, calls the UseV0() method. The latter runs
the XiFinder algorithm, that will eventually tell StVOFinderMaker: :Make () if the current VO has been
used in Xi candidates or not. This way to do, compared with the Fortran one, saves time and memory.

‘ Function ‘ Role in the VOFinder ‘ Role in the XiFinder ‘
Init | Inits Gets exipar from the database
Make | VOFinder “central” algorithm Calls the VOFinder
Clear | Clears Not redefined
GetPars | Gets evOpar2 from the database Not redefined (not used)
Prepare | Finds event-wise parameters, fills tables | Not redefined
UseVO | Returns false XiFinder “central” algorithm
UseExistingVOs | Sets a boolean flag Not redefined
DontZapVO0s | Sets a boolean flag Not redefined
UseITTFTracks | Sets a boolean flag Not redefined
UsingITTFTracks | Returns a boolean flag Not redefined
Trim | Remove the V0’s that don’t pass cuts Not redefined (not used)

FiGc. 3 : Member-functions of StVOFinderMaker and StXiFinderMaker.

The table below shows how this is run in the C++ XiFinder (provided that it’s the XiFinder
that is called and not just the VOFinder) :

Call StXiFinderMaker: :Make () (Calls everything below)
Call StXiFinderMaker: :Prepare() | Finds event-wise parameters and fills the tables
Call StVOFinderMaker: :Make () Finds V0’s in this event
Call StXiFinder: :UseV0() Finds Xi’s for a given V0 and store them in StEvent
(back in VOFinderMaker: :Make) If VO is used in Xi’s / may be primary : store in StEvent

4.3 VOFinder

Fic. 7?7 shows the detailed structure of the VOFinder, with all the cuts that are applied. Of course,
more accurate information can be found... by looking at the code ;-) .

Before the loops, tables called ptrks, ntrks, etc..., are filled in the function StVOFinderMa-
ker: :Prepare(), and the values used afterwards are those that are stored in these tables, in order to
improve the speed of the code. The XiFinder doesn’t use all of them yet... but will.

The cuts’ value are got in the function StVOFinderMaker: :GetPars(), and stored in the
member objects pars and pars2. Here are the components :

e n point : number of hits,
e dcapnmin : distance of closest approach between the daughter tracks and the primary vertex,
e dca : distance of closest approach between the VO daughters,

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

dlen : decay length of the VO,
dcavO : distance of closest approach between the V0 trajectory and the primary vertex,
alpha max : o Armanteros,

ptarm max : p;, Armanteros.

Get parameters from database
Get event
Get position of the primary vertex
Loop over all tracks
Select normal vs ITTF
If bad flag : next
If bad detector ID : next
Store track and parameters in tables
| (separately pos. and neg.)
Loop over positive tracks
Loop over negative tracks
Determine V0’s detector ID
CUT on number of hits
CUT on dcaTrackToPvx
Find number of intersection points between both helices
Find 2D dca between both helices at both intersection points
Keep the smallest dca
CUT if one track doesn’t point away from Pvx
CUT if VO decays after first hit of either track
Calulate approximated 3D dca between both helices
CUT on dcaV0Daughters
CUT on dcaTrackToPvx
CUT on decay length from Pvx
CUT if VO doesn’t point away from Pvx
CUT on dcaV0ToPvx
CUT on Arm
cuTonp,,,..
Fill an StVOVertex
Call UseVO0 to find if VO is used for Xis
| If primary or used in Xi : store

Fi1G. 4 : Cuts and algorithm of the VOFinder.

Some information about each cut applied :
e Number of hits : both tracks must have a number of hits > DB’->n_point
e DcaTrackToPvx : dca between each of the tracks and the primary vertex : see explanations in
the next paragraph
e Track points away from Pvx : both tracks have to point away from the primary vertex, i.e. if
we call X the primary vertex and M the point of a track that is the closest to the other helix,
IZ; + XM must be positive

9Database.

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

e V0 decays after the first hit of either track : this cut removes obviously bad candidates (or bad
decay lengths calculations) which have a decay length that is e.g. longer than the size of the TPC.

The first hit is assumed to be at StPhysicalHelix::origin. Calling it H, and V the V0 decay
point, the requirement is that m . V‘I—[) must be positive

DcaV0Daughters : the calculated dca between both tracks has to be < DB->dca
DcaTrackToPvx : same as above, see also the next paragraph

Decay length : the calculated VO decay length has to be > DB->dlen

VO points away from Pvx : calling X the primary vertex and A the point where both helices are

closest to each other, p_A> . ﬂ must be positive

DcaVO0ToPvx : the calculated dca between the V0 and the primary vertex must be < DB->dcav0
e Alpha Armanteros : a4y, must be < DB->alpha max

e Pt Armanteros : p, ~ must be < DB->ptarm max

Now, the dcaTrackToPvx cut requires some non-obvious explanations. Its second occurence
is simple to understand : it is a cut on the dca of both tracks to the primary vertex — both have to be >
DB->dcapnmin — that is applied only when pﬁ_vo is lower than a variable called ptV0sq, and whose value
is set to (3.5 GeV)? in the constructor of StVOFinderMaker. This is done to cut less signal at high-p ,
an area where there is very few background, thus enabeling a loosening of the cuts.

Its first occurence is done to apply this cut as soon as possible, for the code to be faster (less
track pairs to process), at a time when p_vo) is not calculated yet. The reason why this is possible is that,
indexing with n (resp. p) what is related with the negative (resp. postive) daughter,

Pin+DPlp>Plyg (1)

Here is the demonstration : let’s call r the axis that is parallel to p_VO) , 0 the perpandicular axis. With
these (u;,) coordinates, we have :

{ Pvo, = Pn.tDp,
Pvoy, = Png +Ppy =0

ie. :
Plyo = Pyo, = Pn, + Dp,

Since p 1y > pn, and pi, > ppro, we obtain :

Pin+Pip>Pn +Pp =iy, » QED°

So the first occurence of the dcaTrackToPvx cut applies this cut when (p,, + p Lp)Z < ptV0sq, with
ptV0sq = 3.5 GeV, because according to (??), any track pair cut by this condition would anyway have
been cut by the second occurence of the dcaTrackToPvx cut (because p,,, <pin+pip < 3.5 GeV).
For security, a factor of 0.98 multiplies the p; limit in the first occurence of the cut. To sum
up :
e First occurence : if p 1, +p1, < V0.98 x 3.5 GeV, apply the dcaTrackToPvx cut on both tracks
e Second occurence : if p;,, < 3.5 GeV, apply the dcaTrackToPvx cut on both tracks

9Because of the opening angle of the VO decay, the inequality is most often strict.
9Quod erat demonstrandum, not quantum electrodynamics ;-) .

10

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

4.4 XiFinder
4.4.1 Differences between Fortran and C++

The differences between the Fortran code and the C++ code are shown in F1G. 77, on the half-detailed
algorithm. The red lines show what has disappeared, either because of the new structure of the code, or
because of the fact that we are using StEvent. The green lines show the parts that have been reshaped,
for the same reasons as several parts have been removed.

Apart from these modifications, the code is a simple translation from Fortran to C++. This
may change once we are convinced that the C++ code has no bug : we may then want to have the code
more readable, or better organised, or we may even want to replace some calculation algorithms.

So far, the code is all in one block, for speed purposes, and the beginning and end of each
former Fortran subroutine is indicated by commented lines. Once again, when we are sure that we don’t
need to compare the C++ and Fortran codes anymore, we’ll probably remove all this.

Avoiding calls to subfunctions resulted in a duplication of a certain part of the code. Figure
?? show how the C++ code structure fits to the Fortran one, but let’s detail the changes (green lines in
F1G. 7?) one by one.

Do things... Do things...
Loop over V0 vertices Loop over VO vertices
Find vertex key
Hits in which detectors Hits in which detectors
Loop over global tracks Loop over global tracks
Select correct charge Select correct charge
Don’t use VO tracks Don’t use V0 tracks
Hits in which detectors Hits in which detectors
Parameters conversion
Subroutine circle_param
Calculate dca V0/bachelor in 2D Calculate dca VO0/bachelor in 2D
Subroutine update_track_param Subroutine update_track_param
Approxim. of 3D-dca by lineari- Approxim. of 3D-dca by lineari-
zation of the helix zation of the helix
Subroutine track mom
Check validity of linear approx. Check validity of linear approx.
Subroutine evO_project_track Subroutine ev0_project_track
If not good : try again (up to 3 If not good : try again (up to 3
tries) tries)

F1G. 5 : Differences Fortran vs C++ in the XiFinder algorithm.

The reshaping of the Lambda mass calculation consisted simply in calculating the invariant

11

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

mass using other parameters : taking the example of the A invariant mass, we have :
mi = B}~ 7%

— (Bt B~ (P47

= B} +E24+2B8.E - P} - P2 20,7
In Fortran, the E and ? terms are grouped together, and the invariant mass is calculated with this
formula :

m3 = mf, + m72T +2E,E_ — 2?+?_
In C++, energies and momenta are kept separated, and the formula used is, as already written above :
mi = (BB = (Pt B
= (\/71 +mj + \/72_ +m%) - 73
To modify the structure of casc_geom and of the loop coloured in green in F1G. ??, I've written

the Fortran code as a set of for-loops, if-loops, goto’s and blocks of instructions. The figures below show
those reashapings : F1G. ?? shows the reshaping of casc_geom, and Fig. ?? shows the reshaping of the

inside of the loop over the intersection points (between the bachelor’s helix and the V0’s straight line).
In F1Gg. 7?7, what is called Block 5 is actually a huge part of the program, and it hasn’t been reshaped.

if (p; #0)
Block 1
if (¢ < 0) goto 137
| Block 2 if (py #0)
else //(p; ==0) Block 1
Block 3 if (¢ < 0) Block 5
if (¢ < 0) goto 137 N | else Block 2
| Block 4 else //(pz ==0)
exit //(from the subroutine) Block 3
Lbl 137 if (¢ < 0) Block 6
if (py # 0) | else Block 4
| Block 5
else //(py ==0)
| Block 6
FiG. 6 : Reshaping of casc_geom : Fortran to C++.
tries=1 .
Block 1 tries=1
Lbl 60 Block 1
Block 2 Block 2 .
if (condl && tries<3) whlle. (condl && tries<3 && cond2)
Block 3 tries++
if (cond2) //(Depends on Block 2) — Block 3
triest+ Block 4
Block 4 | Block 2
Goto 60 if (condl && tries<3)
Block 3
. _Block 5 Block 5
if (cond3) if (cond3) break
| Goto 30 //(Just after the for-loop)

12

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

F1G. 7 : Reshaping of the loop over the intersection points : Fortran to C++.

4.4.2 Calculation of the intersection points

Now, here is how are calculated the coordinates of the intersection points in the bending plane (zOy)
between the V0’s straight line and the bachelor’s helix (actually, of their projection in the bending plane).
This is done in the code in the former subroutine casc_geom.

Let’s call A the projection of the V0’s trajectory, and C the circle that is the projection of the
bachelor’s trajectory. Their equations are :

A:y=azx+b C:(:lc—a:c)2—I—(y—yc)z:R2

Calling (zg, 7o) a point on the V0’s trajectory, and ? = (pg, Py, P>) its momentum, we obtain :
g y

a="2 b=1yo— Xa,

Dz Dz
Thus : P

A:iy="2(z—1z0) + 90

Pz
If we change the variables, with X =z —z. and Y =y — y., we have :
A:Y:%(X+:vc—x0)+y0—yc C:X?+Y?=R?
X

Now, we can search the intersection points. If we call §; = z. — z¢ and 0y = Y. — yo, we have
to solve this system of equations :

Y2 — R2 _X2
2
{ v = (DX +8) - 4,)
which, if we define a = py/p, and 8 = ad, — 6y, and modify the equations, becomes :

X2(a?+1)+2aBX +B?—R?2=0

If the condition R?(a? + 1) > 2 is true, then we have 2 solutions, that are :
7

X — aft+/R?(a?+1)—p2

a2+1

{ Y =a(X +8;) — 4y

The 2-D coordinates of these 2 points are stored in the code in variables called xOut and yOut.

4.4.3 Calculation of the dca between the V0 and the bachelor

The algorithm that calculates the dca between the VO (a line) and the bachelor (a helix) is rather
intuitive (see also F1G. ??). This dca can’t be calculated analytically, so the trick is to linearise the helix
locally. This means that we will assume, for the dca calculation, that the helix is equal to its tangent at
the intersection point between the helix and the VO line.

Then, the position of the point of the tangent where the distance to the VO line is the smallest
is calculated. To check that the linearisation is not a too strong approximation, the disctance between

13

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

that point and the actual helix is calculated, and is required to be smaller than a certain fraction of the
helix’ radius. If this is true but if the distance is yet bigger than another fraction of the helix’ radius
(obviously smaller than the previous one), then the helix is linearised at the calculated point (instead of
the intersection point in 2-D), and the calculation is re-done.

This is done 3 times, or less if the distance between the calculated point and the actual helix
matches the second criterium after less than 3 loops. So all the candidates that match the first criterium
are kept, and those not matching the second criterium are simply improved by trying 3 times to linearise
the helix at a point that is closer to the actual point where the distance to the V0 line is the smallest.

The first part of the algorithm is illustrated by the figure 7?7, which shows the projection in
the plane (zOy) of the cascade geometry : that gives the circle C (projection of the helix) and the line
A (projection of the 3-D line). M is one of the 2 intersection points (always in 2-D ; in 3-D, the helix
and the line almost never intersect), C is the center of the circle, R its radius, and A is the projection
of what is called the origin of the helix (it’s most often the first hit point, or more exactly the point of
the helix that is closest to the first hit, since the helix is a fit). ¥ is the angle between the z axis and
the tangent to the circle in A. For lack of imagination, I'll keep the same names for the non-projected
objects later ;-) (i.e. C for the helix, A for the VO line and A for the origin (not its projection) of the
helix).

F1G. 8 : Projection of the cascade geometry in the 2-D plane (zOy).

The first part of the code that is run is the former subroutine update_track_param. Its role
is simply to move the orgin of the helix from its former position A to its new position M (actually, the
point of the helix that overlaps with M when projected to the (zOy) plane).

Here is a list of the various variables in this area of the code :

e xi : z coordinate of the origin
e yi: y coordinate of the origin

——

o axb: CA- W, where W is the vector such as | /|| = ||C'—J\)/I|| and (C’—>,ﬁ) =—

N

14

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

e arg: sin(CTZl, 6]?/1)

e ds : curvilinear length on the circle between A and M

e dz: zy — za
And what follows is how to do the link between the code and the mathematical formulas :
In the code : axb = (xi-xc) (yOut-yc) - (yi-yc) (xOut-xc)

Ty — g CM;: Ty — Lo o = Yvu — Yo

CA =
Ya — Yo Yu — Yo —(zy —z0)
So Cﬁl W = (‘,'EA - wc)(yM - yc) - (y4_ yc)("EM - ‘Tc) = axb.
Now, let’s try to find what is axb = CA - W
we know that ||| = ||C’—]W>||, SO :

Therefore, since rsq = R?, we obtain arg = axb/rsq = sin(CTzl, C’—]\j)

ds is then defined as the angle (arcsin(arg)) multiplied by R, i.e. it is the curvilinear length on the circle
from A to M.

And then, from the definition of the dip angle’ , we obtain that dz = ds.tan(dipAngle) is zj — 24
(considering this time A and M as the points on the helix instead of on the circle).

At the end of the former subroutine update track param, a helix called bachGeom?2 is booked
with the same parameters than the original bachelor helix taken from the track container, bachGeom,
except for the origin that has been moved from A to M, and the angle ¥ that obviously changes when
the origin moves (see F1ag. 77).

The next piece of code is the former subroutine track_mom, which just books the momentum
of the bachelor taken in M in the variable xOrig (which contained the 3-D position of M a couple of
code-lines before : since both usages don’t overlap, the same StThreeVector can be used for both of
them).

The next part of the code is the most difficult one to understand. It wasn’t a subroutine in
the Fortran code : that was part of the exiam function. Here is a list of the various variables in this
area, of the code :

e pBach : normalised momentum of the bachelor in M (so it’s rather the (normalised) direction of

the tangent to the helix in M)

e dvOdotdb : cos(m,m)

e diffc: J\TV) , calling V' the point where the V0O decays

e denom : cosz(cm,M) -1

e 52 : ehm... well... see the explanations below !

e valid : relative error due to the linearisation
So let’s call V' the position of the VO vertex, i.e. the point where the VO decays. As described p. 77, we
now linearise the helix, i.e. we now assume that the helix can be merged with its tangent in M. So an
approximation of the point where the distance between the helix and the VO line is the smallest is the
point where the distance between the tangent to the helix and the VO line is the smallest.

OFor a detailed note about the helices’ parameters, see the appendix A of the Star Class Library documentation.

15

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

Let D be the tangent to the helix in M, A being the VO line, and let H; (resp. Hz) be the
point on A (resp. on D) where the distance to D (resp. to A) is the smallest.

Calling W the vector that drives A (ie. W = dpm) and ¥ the vector that drives D (i.e.
v = pBach), we can write Hy and Hj as :

H =V +kd Ho=M + kW

With the definition of H; and Hy above, we can write that we search :

(H1 €A Hs € D) / HHy 1 A and HHy 1L D (2)
e T
& (HieAHyeD) | HHy, 4 =HH ¥ =0 (3)

Given that
HiHy =M + kW -V — kW
=VM+ kW -k
= —diffc+ kQ? — klﬁ

we can re-write the system (?7) as

HH T = —diffe-T + k@ -7 — k0 -0
My ¥ = —aiffe- T+ k¥ T k@ -7

0
0

which can also be written as

—diffc- U + kycos(V, W) — k1 =0
—diffc- 0 4+ ky —kycos(W, V) =0

because | 7| = || 7| = 1.

Solving this system, we obtain :

—diffe-(T cos(W, V)W)

ki =

! cos?(d, 7)1

b — diEEe-(W cos(@, 7))
2 cos?(d,7)—1

In the code, s2 is calculated as :
s2 = (dpV0.X dvOdotdb - pBach.X) diffc.X + (dpV0.Y dvOdotdb - pBach.Y) diffc.Y + (dpV0.Z
dvOdotdb - pBach.Z) diffc.Z;
s2 = s2/denom;
which can be written as? :

(apV0 cos(W, v/)—pBach)-diffc

2=
cos?(d, V)1
o diffe-(d cos(W, 7))

cos?(d,) -1

= ko
So s2 is the 3-D algebraic distance M Hy between M and Ho, the point of D that is closest to A.

9Given that dvOdotdb = de3 - pBach = cos(dpV0, pBach). Thus denom = cos2(de3, pBach) — 1 = cos*(W, ¥) — 1.

16

VOFinder and XiFinder 4 - Structure of the Fortran and C++ codes

Then, valid is calculated as ‘s2\/pBach.X2 + pBach.Yz‘, i.e. it’s the distance in the (zOy)

plane between M and Hs, as illustrated by figure ??. The value valid itself is not very helpful to
determine if the linearisation is a good approximation or not. The value that has to be looked at is
actually the distance between Hy and the circle in the 2-D plane, which is called d in figure ?7?.

But d actually depends explicitely on valid, which means that an initial requirement on d can
be transformed into a requirement on valid. This allows not to calculate d and saves some calculation
time — at least it’s the only reason I’ve found that would explain why the authors of the code have chosen
to test valid rather than d ! The relation between d and valid is :

d =+ R?+valid2 — R

= %:\/H(vall;dy 1 (4)

There are 2 conditions on %. Let’s call these two values valid; and valids, with valid; <
validy. The original algorithm (I may change that, and will try to update this documentation if so)
throws away any Xi candidate for which valid > wvalids, and keeps all the other ones. But if valid €
[validy;valids], then another part of the algorithm, which I describe in the next paragraph, is run.
It consists in improving the quality of the linearisation by linearising the helix at another point. This
improvement is tried at most 3 times. Basically, this means that a linearisation that gives valid > wvalids
means that it’s hopelessly bad ; when valid < wvalid; it means that the linearisation is good enough
and doesn’t need to be improved ; and when valid € [valid;;validy], the linearisation is improved but
it actually doesn’t matter if the criterium valid < valid; is not reached : the candidate is kept anyway.
As far as I've seen during the tests, only a very few proportion of the candidates need 3 passes in the
loop?, so requiring more than 3 passes is indeed not necessary.

This table shows the numerical values of valid; and valids 0.001 R < valid < 0.02 R
used in the code (first line) and their equivalent for the more 5107 R< d <2107*R
interesting variable %, calculated with (??). 0.0005 % < 4 <0.02%

valid

9Result obtained over 1 Au-Au 200 GeV central event : over 73 269 bachelor, neglecting those which have only 1
intersection point, 45 500 have 2 intersection points, i.e. 62 % of them (and therefore 38 % have no intersection points).
Among the 118 194 dca calculations of those 62 %, 77.0 % of them don’t need a better linearisation, 21.7 % need to go once
in the loop, 0.8 % need to go twice in the loop, and 0.5 % go 3 times in the loop (this latter percentage, unike the former
ones, is the number of candidates that need only 3 passes added to the number of candidates that would need more).

17

VOFinder and XiFinder

4 - Structure of the Fortran and C++ codes

F1G. 9 : 2-D plane evaluation of the quality of the approrimation made by linearising the heliz.

So when valid € [validy;valids], here is the piece of code that is run :

e Former subroutine evO_project_track : calculates the coordinates (in the (zOy) plane) of the
point M’ defined as the intersection of the circle C and the line (CHs) (see F1a. ?7)
e Former subroutine update_track param: moves the origin of the helix from M to M’ (as previ-

ously done from A to M)

e Former subroutine track mom : calculates the momentum of the bachelor in M’ (as previously

done in M)

e Block that calculates s2 and valid : calculates a new s2 and valid, whose value will be checked
to see if one more pass in this loop is necessary

The 3 last blocks are exactly the same as those already described above, so I’ll only describe the former
subroutine ev0O_project_track : the list below is made of the variables that are used in this area of the

code :
e batv : 3-D coordinates of Hy
e dtmp : z, — Ty,
® atmp : Y, — Yy,
e ctmp : slope of the line (CHy)
e yy: yMI —Ye
®zz:x,, —I,
[J
[J
[J
[J

x0ut : =, (contained z,, before)
yOut : y,, (contained y,, before)

xAns : temporary variable that I'll remove soon...
yAns : temporary variable that I'll remove soon...

The calculation of (z,,,y,,,) is simple : since ctmp = % is the inverse of the slope of (CHs) the

equation of (CHy) is :

N ctmp

¢ Yu,

($—.Tc) +yc

and therefore, setting ' =z, —z, and 9y = y,, —y,, M’ is such as :

Solving this system gives :

y, = (ctlmp> ‘TI

$/2 + y/2 — R2

R

RV 1—|—c1:mp2

ctmp - 3/

z' and 9 are respectively zz and yy in the code, and the “signus dilemma” is solved by the if-loop on

the sign of atmp.

At the end of the while-loop, the candidates for which valid > walids are simply thrown
away, and all the other ones are kept, even if valid > walid;. The value of s2 calculated during the last
loop is kept, and s1 (which is the k; of equation (??) (p. ??) and of the following ones) is calculated as

sl =

—diffc - (pBach x dvOdotdb — dpV0) —diffe- (7 cos(d, V) — @)

dv0dotdb? — 1

cos2 (W, V) — 1

18

VOFinder and XiFinder 6 - Detectors

Then, the 3-D coordinates of H; are calculated and stored in vOatv, just like the coordinates of Hy are
stored in batv. Once this is done, we check that fﬁ goes roughly in the same direction as p_VO), ie.
that the VO points away from the Xi vertex newly found. This is done via the variable check, that is
exactly fﬁ . p_vo) .

If check is positive, it means that the VO points to the opposite direction than where the Xi
vertex is, and the rest of the algorithm — run only in that case — can be roughly summed up as something
that looks like that :

-
dca = |[|vO0atv — batv” // dca = H{H,
xpp = Ylatv_baty // xpp = 3-D coordinates of the middle of [H; Hy)
v = prp — vaxH // rv = Xi decay length

if (cuts are OK)

pXi = pVO + x0rig // IZZ D7 5

=Dyt Pach,m,

check = (xpp - xPvx) . ﬁ // Check that PvxXivtz @ >0, i.e. that the
if (check > 0) // reconstructed Xi points away from the Pvx

| iflag=0 if the dcaXiPvx (cut) is OK
if (iflag=0)

Calculates the kinematic variables
[Store the candidate

4.4.4 Detailed algorithm and cuts

The detailed algorithm is actually explained in the section 7?7 concerning the calculation of the dca, p.
?7?. Yet, in the latter paragraph, no overview of the algorithm is given and the cuts are not listed. This
is the purpose of this short paragraph, and is summed up in F1a. ?7.

Blablabla.

Loop over V0 vertices
Apply cuts on the VO and VO daughters
Loop over global tracks
If track has wrong charge : next
If track already used in the V0 : next
Find DCA between V0’s straight line and track’s helix
Apply cuts
If good candidate : store

Fi1G. 10 : Cuts and algorithm of the XiFinder.

5 Detectors

Blablabla

19

VOFinder and XiFinder 6 - Rotating and like-sign

6 Rotating and like-sign

These options have been implemented for analysis purpose, and have been thought to be a plug-and-play
code, avoiding private dirty versions ;-) and waste of time for those who wish to use such methods and
would have had to code them themselves.

6.1 Like-sign analysis

For a decay channel A — B + C, the like-sign method consists in reconstructing A by associating B
and C rather than B and C. Its name comes from the usage in decays such as A — p(*t) 4+ 7~ (using
like-sign, p would be combined with 7, a particle that has the same sign), but let’s extend this usage
to the =-like decays, e.g. 2= — A? + 7. Since the A is neutral, associating a A with a 7+ instead of
a m~ isn’t doing like-sign strictly speaking, but I will call this like that.

Like-sign analysis has been implemented only in the XiFinder, not in the VOFinder. The
reason why is that one of the Xi decay is neutral, and combining a stright line with a positive helix
rather than a negative one doesn’t change anything. But things are different for a VO decay : in such a
case, “like-singing” means combining 2 helices of same charge, instead of opposite charge, and, although
I’ve never checked that or looked at distributions made by somebody else, I'd bet that things like the
combinatoric, the dca distribution, etc... are changed, which means that the background built with this
method would be different than the real background, because the same cuts are applied to distributions
that don’t have the same shape. So in the case of the V0 decays, the rotating method is probably safer
than like-sign.

As said previously, the like-sign method in the XiFinder consists in finding candidates build
with one of the daughters being the antiparticle of the expected daughter. So we find and store A + 7~
(resp. K~ for the Q) and A + 7T (resp. K1).

In the post-reconstruction analysis codes, one should be very careful when using like-signed
candidates, because the charge of a particle is determined with the charge of the bachelor’. So what
your code will assume is an Q™ is a particle made of a 7— and a A instead of a A. So when applying
the cuts, all the functions that make a hypothesis on the particle identification should be changed (e.g.
massLambda() — massAntiLambda()).

Deciding whether like-sign should or shouldn’t be used is done by using the function StVOFin-
derMaker: :SetLikesignUsage. The 2 possible values are :

e kLikesignUseStandard = 0 : the standard reconstruction with no like-sign is performed,
e kLikesignUseLikesign = 2 : the like-sign reconstruction is done.
Section 7?7 p.?? explains how to use these functions.

In the code, like-sign analysis is done in a very easy way :

e When checking that-and-whether the VO is a A or a A, -1 is stored in variable charge if it’s a A
(ie. aZ or Q candidate will be built), +1 ifit’s a A (i.e. a= or @ candidate will be built).

e Then, the variable charge is transformed according to this formula :
charge=-(uselLikesign-1)*charge; :
if no like-sign has been asked, the variable is unchanged, whereas if like-sign has been required,
the sign of charge is changed.

e The XiFinder eventually loops over tracks whose charge is such as charge X track.charge > 0.

And that’s all !

OThis can be found in StRoot/StStrangeMuDstMaker/StXiMuDst.cc, in function StXiMuDst::FillXi(StXiVertexx
xiVertex).

20

VOFinder and XiFinder 6 - Rotating and like-sign

6.2 Rotating analysis

For a decay channel A — B + C, the rotating method consists in reconstructing A by associating B
with C' rather than C, where C’ is the track of a C-like particle whose parameters have been changed.
The various possible changes are :
e Rotating : a track is rotated by 180° around the axis that is parallel to (Oz) and that goes
through the primary vertex,
e Symmetry : a track is transformed into its symmetric with respect to the (zOy) plane,
e Rotating 4+ symmetry : doing both transofmations together is equivalent to taking the symmetric
of the track with respect to the primary vertex.

Rotating — which will refer from now to all 3 methods described in the previous paragraph —
hasn’t been implemented in the VOFinder yet, but will be some day (I haven’t received any request yet
=))

Deciding whether one of these methods should be used and which one is done by using the
function StVOFinderMaker: :SetRotatingUsage. The usage is explained in section ?? p. ??.There are
4 possible values, which are :

e kRotatingUseStandard = 0 : the standard reconstruction with no rotating is performed,

e kRotatingUseRotating = 1 : the bachelor tracks are rotated,

e kRotatingUseSymmetry = 2 : the bachelor tracks are “symmetrised” with respect to the bending
plane,
kRotatingUseRotatingAndSymmetry = 3 : the bachelor tracks are “symmetrised” with respect
to the primary vertex.

Unlike with like-sign, nothing has to be changed in the post-reconstruction analysis codes.

Here is a mathematical description of how the various rotating-like methods are performed
(see footnote 7?7 p. ?? about the helices’ parameters) : the table below shows how the various helix
parameters are modified depending on the method used.

‘ Original helix ‘ Rotating ‘ Symmetry ‘ Both ‘
Charge c c c c
Angle g U+ LG U+m
Curvature K K K K
Dip angle A A - —A
X origin zo | 2z,,, — To Zo 2z,,, — To
Y origin Yo | 2Yp,. — Yo Yo 2Ypye — Y0
Z origin 20 20 22p,s — 20 | 22p,, — 20
Helicity h h h h
X momentum p, —Dx Pz —Pz
Y momentum p, —Dy Dy —Dy
7 momentum p, j o —Dyz —Pz

In the code, all rotating methods calculations are achieved in one shot, thanks to the pre-
definition of a couple of interesting variables which I describe below. In the code, once the bachelor helix
is moved, nothing else is changed by the use of a rotating-like method. So what is done is simply the
booking (and then usage) of a StHelixModel called bachGeom from both the initial parameters of the
helix and the “interesting variables”, whose value is set at the beginning of the XiFinder, before the loop
on the bachelor tracks.

21

VOFinder and XiFinder

9 - How to use the VO/XiFinder

Here is how the helix parameters are modified before their storage in bachGeom :

charge
helicity
curvature
psi
dipAngle
origin.X
origin.Y
origin.Z

momentum.X
momentum.Y
momentum.Z

Leeititettl

charge

helicity

curvature

psi + cstPsi

epsDipAngle x dipAngle

cstOrigin. X + epsOrigin.X X origin.X
cstOrigin.Y + epsOrigin.Y X origin.Y
cstOrigin.Z + epsOrigin.Z X origin.Z
epsMomentum.X X momentum.X
epsMomentum.Y X momentum.Y
epsMomentum.Z X momentum.Z

The “interesting variables” are written in bold, and the values they are given are listed in the table
below (an empty space means that the value is the same as for “no rotating”) :

Variable ‘ No rotating ‘ Rotating ‘ Symmetry ‘ Both ‘

cstPsi 0 T T
epsDipAngle +1 -1 -1
cstOrigin.X 0 2%, 2%,
cstOrigin.Y 0 2Yp0s 2Yp0a
cstOrigin.Z 0 2Zpys 2Zpye
epsOrigin.X +1 -1 -1
epsOrigin.Y +1 -1 -1
epsOrigin.Z +1 -1 -1
epsMomentum. X +1 -1 -1
epsMomentum.Y +1 -1 -1
epsMomentum.Z +1 -1 -1

The combination of the values in this table and the transformations listed just above it give
the mathematical transformations listed in the table p. 7?. This avoids a check of the rotating choice
by an if-loop inside the for-loop on the tracks, and thus time-consuming jumps in the code.

7 Cuts values

Blablabla

8 How to use the VO/XiFinder

Blablabla

22

VOFinder and XiFinder 9 - Tests

9 Tests

Blabla.

23

